Modulo - Teilen mit Rest

M1

Aufgabe:

Modulo ist eine Rechenoperation (wie z.B. Addition oder Multiplikation). Sie wird für zahlreiche Verschlüsselungsverfahren und auch für Schlüsselaustausch-Verfahren benötigt. Mit Modulo, mod, wird der Rest der ganzzahligen Division bezeichnet.

Beantworte die Fragen am Ende des Textes möglichst genau.

Zeit: 20' **Sozialform:** EA

Die Division mit Rest (Modulo) wird in der Programmierung relativ häufig verwendet. Der entsprechende Operator heisst in unterschiedlichen Programmiersprachen oft mod oder %. Man kann etwa prüfen, ob eine gegebene Zahlgerade ist, indem man folgende Abfrage durchführt:

if
$$((x \mod 2) == 0)$$

Modulo kann man auch nutzen, wenn man in einer Schleife lediglich bei jedem -ten Schleifendurchlauf einen speziellen Programmcode ausführen will. Auch bei vielen Berechnungen und Algorithmen ist der Operator sinnvoll einsetzbar. Allgemein kann man mit mod prüfen, ob eine Zahl durch eine andere genau teilbar ist: Nur dann liefert der Modulo-Operator den Wert 0.

Bei der Modulo-Operation muss etwas gerechnet werden. Sie ist aber leicht zu verstehen.

Beispiel

Jeder von uns benutzt fast täglich die Modulo-Rechnung. Die kommt nämlich bei der Berechnung der Uhrzeit vor. Wir sagen zu der Uhrzeit 15:00 Uhr meist 3 Uhr (nachmittags). Das ist die Modulo-Rechnung mit der Zahl 12: 15 mod 12 = 3, da 15 : 12 = 1, 3 bleibt übrig.

Natürlich rechnet man nicht immer mod 12. 12 kann durch jede ganze Zahl ersetzt werden. Bei den meisten Verschlüsselungsverfahren kommen keine negativen Zahlen vor, das macht es etwas einfacher.

Beispielrechnungen

18 mod 5 = 3, da 18: 5 = 3 (Rest 3) 10 mod 4 = 2, da 10: 4 = 2 (Rest 2) 14 mod 7 = 0, da 14: 7 = 2 (Rest 0)

Weitere Beispiele aus der Informatik für die Anwendung von Modulo-Operationen.

- Berechnung der Prüfziffer der Internationalen Standardbuchnummer
- Prüfsummen-Formel Luhn-Algorithmus zur Bestätigung von Identifikationsnummern wie Kreditkartennummern und kanadische Sozialversicherungsnummern
- Kalenderberechnung (die relativ komplizierte Berechnung des Osterdatums)
- Berechnung der Prüfsumme der Internationalen Bankkontonummer (IBAN)
- In der Kryptografie, beim Diffie-Hellman-Schlüsselaustausch oder beim RSA-Kryptosystem.

Auftrag

1. Löse folgende Aufgaben:

25	mod	7	=	, da	25	:	7	=	, Rest
90	mod	11	=	, da	90	:	11	=	Rest
23	mod	8	=	, da	23	:	8	=	, Rest
10	mod	19	=	, da	10	:	19	=	Rest
106	mod	21	=	, da	106	:	21	=	Rest
42	mod	4	=	, da	42	:	4	=	, Rest
8	mod	3	=	, da	8	:	3	=	, Rest
33	mod	15	=	, da		:		=	, Rest
107	mod	25	=	, da		:		=	, Rest
2180	mod	54	=	, da		:		=	, Rest
1011	mod	12	=	, da		:		=	, Rest
1001	mod	13	=	, da		:		=	, Rest
45	mod	14	_	, da				=	, Rest
			_			•		_	
785	mod	43	=	, da		:		=	, Rest

2. Löse folgende Aufgaben mit Hilfe von Python:

45′753	mod	17	=_	 4′257	mod	5	=
1089	mod	42	=_	 44′856	mod	78	=
407	mod	3	=_	 102′501	mod	20	=
186′023	mod	4′752	=_	 1′001	mod	14	=
412	mod	4	=_	 1′420	mod	04	=
1′040′445	mod	75′421	=_	 1′427′058	mod	45	=

Aufgabe für echte Hacker!°

Erstelle ein Programm in Python, welches die beiden Zahlen abfragt und daraus den Rest nach Division (Modulo) berechnet.

Bild Python IDLE mit Hinweisen zur Wiederholung

